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DETERMINING THE NUMBER OF FACTORS IN
APPROXIMATE FACTOR MODELS

By Jushan Bai and Serena Ng1

In this paper we develop some econometric theory for factor models of large dimen-
sions. The focus is the determination of the number of factors �r�, which is an unresolved
issue in the rapidly growing literature on multifactor models. We first establish the con-
vergence rate for the factor estimates that will allow for consistent estimation of r . We
then propose some panel criteria and show that the number of factors can be consistently
estimated using the criteria. The theory is developed under the framework of large cross-
sections (N ) and large time dimensions (T ). No restriction is imposed on the relation
between N and T . Simulations show that the proposed criteria have good finite sample
properties in many configurations of the panel data encountered in practice.
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1� introduction

The idea that variations in a large number of economic variables can be
modeled by a small number of reference variables is appealing and is used in
many economic analyses. For example, asset returns are often modeled as a
function of a small number of factors. Stock and Watson (1989) used one ref-
erence variable to model the comovements of four main macroeconomic aggre-
gates. Cross-country variations are also found to have common components; see
Gregory and Head (1999) and Forni, Hallin, Lippi, and Reichlin (2000b). More
recently, Stock and Watson (1999) showed that the forecast error of a large num-
ber of macroeconomic variables can be reduced by including diffusion indexes,
or factors, in structural as well as nonstructural forecasting models. In demand
analysis, Engel curves can be expressed in terms of a finite number of factors.
Lewbel (1991) showed that if a demand system has one common factor, budget
shares should be independent of the level of income. In such a case, the num-
ber of factors is an object of economic interest since if more than one factor is
found, homothetic preferences can be rejected. Factor analysis also provides a
convenient way to study the aggregate implications of microeconomic behavior,
as shown in Forni and Lippi (1997).
Central to both the theoretical and the empirical validity of factor models is

the correct specification of the number of factors. To date, this crucial parameter

1 We thank three anonymous referees for their very constructive comments, which led to a much
improved presentation. The first author acknowledges financial support from the National Science
Foundation under Grant SBR-9709508. We would like to thank participants in the econometrics
seminars at Harvard-MIT, Cornell University, the University of Rochester, and the University of
Pennsylvania for help suggestions and comments. Remaining errors are our own.
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is often assumed rather than determined by the data.2 This paper develops a
formal statistical procedure that can consistently estimate the number of factors
from observed data. We demonstrate that the penalty for overfitting must be
a function of both N and T (the cross-section dimension and the time dimen-
sion, respectively) in order to consistently estimate the number of factors. Con-
sequently the usual AIC and BIC, which are functions of N or T alone, do
not work when both dimensions of the panel are large. Our theory is developed
under the assumption that both N and T converge to infinity. This flexibility is
of empirical relevance because the time dimension of datasets relevant to factor
analysis, although small relative to the cross-section dimension, is too large to
justify the assumption of a fixed T .
A small number of papers in the literature have also considered the problem

of determining the number of factors, but the present analysis differs from these
works in important ways. Lewbel (1991) and Donald (1997) used the rank of a
matrix to test for the number of factors, but these theories assume either N or T
is fixed. Cragg and Donald (1997) considered the use of information criteria when
the factors are functions of a set of observable explanatory variables, but the data
still have a fixed dimension. For large dimensional panels, Connor and Korajczyk
(1993) developed a test for the number of factors in asset returns, but their test
is derived under sequential limit asymptotics, i.e., N converges to infinity with a
fixed T and then T converges to infinity. Furthermore, because their test is based
on a comparison of variances over different time periods, covariance stationarity
and homoskedasticity are not only technical assumptions, but are crucial for the
validity of their test. Under the assumption that N →� for fixed T , Forni and
Reichlin (1998) suggested a graphical approach to identify the number of factors,
but no theory is available. Assuming N�T → � with

√
N/T → �, Stock and

Watson (1998) showed that a modification to the BIC can be used to select
the number of factors optimal for forecasting a single series. Their criterion is
restrictive not only because it requires N � T , but also because there can be
factors that are pervasive for a set of data and yet have no predictive ability
for an individual data series. Thus, their rule may not be appropriate outside of
the forecasting framework. Forni, Hallin, Lippi, and Reichlin (2000a) suggested
a multivariate variant of the AIC but neither the theoretical nor the empirical
properties of the criterion are known.
We set up the determination of factors as a model selection problem. In con-

sequence, the proposed criteria depend on the usual trade-off between good fit
and parsimony. However, the problem is nonstandard not only because account
needs to be taken of the sample size in both the cross-section and the time-
series dimensions, but also because the factors are not observed. The theory we
developed does not rely on sequential limits, nor does it impose any restrictions
between N and T . The results hold under heteroskedasticity in both the time and

2 Lehmann and Modest (1988), for example, tested the APT for 5, 10, and 15 factors. Stock and
Watson (1989) assumed there is one factor underlying the coincident index. Ghysels and Ng (1998)
tested the affine term structure model assuming two factors.
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the cross-section dimensions. The results also hold under weak serial and cross-
section dependence. Simulations show that the criteria have good finite sample
properties.
The rest of the paper is organized as follows. Section 2 sets up the preliminaries

and introduces notation and assumptions. Estimation of the factors is considered
in Section 3 and the estimation of the number of factors is studied in Section 4.
Specific criteria are considered in Section 5 and their finite sample properties
are considered in Section 6, along with an empirical application to asset returns.
Concluding remarks are provided in Section 7. All the proofs are given in the
Appendix.

2� factor models

Let Xit be the observed data for the ith cross-section unit at time t, for i =
1� � � � �N , and t = 1� � � � � T . Consider the following model:

Xit = ′iFt+eit�(1)

where Ft is a vector of common factors, i is a vector of factor loadings associated
with Ft , and eit is the idiosyncratic component of Xit . The product ′iFt is called
the common component of Xit . Equation (1) is then the factor representation of
the data. Note that the factors, their loadings, as well as the idiosyncratic errors
are not observable.
Factor analysis allows for dimension reduction and is a useful statistical tool.

Many economic analyses fit naturally into the framework given by (1).
1. Arbitrage pricing theory. In the finance literature, the arbitrage pricing the-

ory (APT) of Ross (1976) assumes that a small number of factors can be used to
explain a large number of asset returns. In this case, Xit represents the return of
asset i at time t� Ft represents the vector of factor returns, and eit is the idiosyn-
cratic component of returns. Although analytical convenience makes it appealing
to assume one factor, there is growing evidence against the adequacy of a single
factor in explaining asset returns.3 The shifting interest towards use of multifactor
models inevitably calls for a formal procedure to determine the number of fac-
tors. The analysis to follow allows the number of factors to be determined even
when N and T are both large. This is especially suited for financial applications
when data are widely available for a large number of assets over an increasingly
long span. Once the number of factors is determined, the factor returns Ft can
also be consistently estimated (up to an invertible transformation).
2. The rank of a demand system. Let p be a price vector for J goods and ser-

vices, eh be total spending on the J goods by household h. Consumer theory
postulates that Marshallian demand for good j by consumer h is Xjh = gj�p� eh�.
Let wjh = Xjh/eh be the budget share for household h on the jth good. The

3 Cochrane (1999) stressed that financial economists now recognize that there are multiple sources
of risk, or factors, that give rise to high returns. Backus, Forsei, Mozumdar, and Wu (1997) made
similar conclusions in the context of the market for foreign assets.
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rank of a demand system holding prices fixed is the smallest integer r such that
wj�e�= j1G1�e�+· · ·+jrGr�e�. Demand systems are of the form (1) where the
r factors, common across goods, are Fh = �G1�eh� · · ·Gr�eh��

′. When the number
of households, H , converges to infinity with a fixed J �G1�e� · · ·Gr�e� can be esti-
mated simultaneously, such as by nonparametric methods developed in Donald
(1997). This approach will not work when the number of goods, J , also converges
to infinity. However, the theory to be developed in this paper will still provide a
consistent estimation of r and without the need for nonparametric estimation of
the G�·� functions. Once the rank of the demand system is determined, the non-
parametric functions evaluated at eh allow Fh to be consistently estimable (up to
a transformation). Then functions G1�e� · · ·Gr�e� may be recovered (also up to
a matrix transformation) from F̂h �h= 1� � � � �H� via nonparametric estimation.
3. Forecasting with diffusion indices. Stock and Watson (1998, 1999) considered

forecasting inflation with diffusion indices (“factors”) constructed from a large
number of macroeconomic series. The underlying premise is that these series may
be driven by a small number of unobservable factors. Consider the forecasting
equation for a scalar series

yt+1 = �′Ft+�′Wt+�t�
The variables Wt are observable. Although we do not observe Ft , we observe
Xit� i = 1� � � � �N . Suppose Xit bears relation with Ft as in (1). In the present
context, we interpret (1) as the reduced-form representation of Xit in terms of
the unobservable factors. We can first estimate Ft from (1). Denote it by F̂t . We
can then regress yt on F̂t−1 and Wt−1 to obtain the coefficients �̂ and �̂, from
which a forecast

ŷT+1�T = �̂′F̂T + �̂WT

can be formed. Stock and Watson (1998, 1999) showed that this approach of
forecasting outperforms many competing forecasting methods. But as pointed
out earlier, the dimension of F in Stock and Watson (1998, 1999) was determined
using a criterion that minimizes the mean squared forecast errors of y. This may
not be the same as the number of factors underlying Xit , which is the focus of
this paper.

2�1� Notation and Preliminaries

Let F 0
t � 

0
i , and r denote the true common factors, the factor loadings, and the

true number of factors, respectively. Note that F 0
t is r dimensional. We assume

that r does not depend on N or T . At a given t, we have

Xt = �0 F 0
t + et

�N ×1� �N × r� �r×1� �N ×1�(2)

where Xt = �X1t�X2t� � � � �XNt�
′��0 = �01�02� � � � � 0N �′, and et = �e1t� e2t� � � � �

eNt�
′. Our objective is to determine the true number of factors, r . In classical
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factor analysis (e.g., Anderson (1984)), N is assumed fixed, the factors are inde-
pendent of the errors et , and the covariance of et is diagonal. Normalizing the
covariance matrix of Ft to be an identity matrix, we have  = �0�0′ +!, where
 and ! are the covariance matrices of Xt and et , respectively. Under these
assumptions, a root-T consistent and asymptotically normal estimator of  , say,
the sample covariance matrix  ̂= �1/T �∑T

t=1�Xt− X��Xt− X�′ can be obtained.
The essentials of classical factor analysis carry over to the case of large N but
fixed T since the N ×N problem can be turned into a T ×T problem, as noted
by Connor and Korajczyk (1993) and others.
Inference on r under classical assumptions can, in theory, be based on the

eigenvalues of  ̂ since a characteristic of a panel of data that has an r factor
representation is that the first r largest population eigenvalues of the N ×N
covariance of Xt diverge as N increases to infinity, but the �r +1�th eigenvalue
is bounded; see Chamberlain and Rothschild (1983). But it can be shown that all
nonzero sample eigenvalues (not just the first r) of the matrix  ̂ increase with
N , and a test based on the sample eigenvalues is thus not feasible. A likelihood
ratio test can also, in theory, be used to select the number of factors if, in addi-
tion, normality of et is assumed. But as found by Dhrymes, Friend, and Glutekin
(1984), the number of statistically significant factors determined by the likelihood
ratio test increases with N even if the true number of factors is fixed. Other
methods have also been developed to estimate the number of factors assuming
the size of one dimension is fixed. But Monte Carlo simulations in Cragg and
Donald (1997) show that these methods tend to perform poorly for moderately
large N and T . The fundamental problem is that the theory developed for clas-
sical factor models does not apply when both N and T → �. This is because
consistent estimation of  (whether it is an N ×N or a T ×T matrix) is not a
well defined problem. For example, when N > T , the rank of  ̂ is no more than
T , whereas the rank of  can always be N . New theories are thus required to
analyze large dimensional factor models.
In this paper, we develop asymptotic results for consistent estimation of the

number of factors when N and T →�. Our results complement the sparse but
growing literature on large dimensional factor analysis. Forni and Lippi (2000)
and Forni et al. (2000a) obtained general results for dynamic factor models, while
Stock and Watson (1998) provided some asymptotic results in the context of
forecasting. As in these papers, we allow for cross-section and serial dependence.
In addition, we also allow for heteroskedasticity in et and some weak dependence
between the factors and the errors. These latter generalizations are new in our
analysis. Evidently, our assumptions are more general than those used when the
sample size is fixed in one dimension.
Let Xi be a T × 1 vector of time-series observations for the ith cross-section

unit. For a given i, we have

Xi = F 0 0i + ei�
�T ×1� �T × r� �r×1� �T ×1�(3)
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where Xi = �Xi1�Xi2� � � � �XiT �
′� F 0 = �F 0

1 � F
0
2 � � � � � F

0
T �

′, and ei = �ei1� ei2� � � � �
eiT �

′. For the panel of data X = �X1� � � � �XN�, we have

X = F 0 �0′ + e�
�T ×N� �T × r� �r×N� �T ×N�(4)

with e = �e1� � � � � eN �.
Let tr�A� denote the trace of A. The norm of the matrix A is then �A� =

�tr�A′A��1/2. The following assumptions are made:

Assumption A—Factors: E�F 0
t �4 <� and T −1∑T

t=1 F
0
t F

0′
t →  F as T → �

for some positive definite matrix  F .

Assumption B—Factor Loadings: �i� ≤ ̄ <�, and ��0′�0/N −D�→ 0 as
N →� for some r× r positive definite matrix D.

Assumption C—Time and Cross-Section Dependence and Heteroskedasticity:
There exists a positive constant M <�, such that for all N and T ,
1. E�eit�= 0�E�eit�8 ≤M;
2. E�e′set/N� = E�N−1∑N

i=1 eiseit� = )N�s� t�� �)N�s� s�� ≤ M for all s, and
T −1∑T

s=1
∑T
t=1 �)N�s� t�� ≤M;

3. E�eitejt� = *ij� t with �*ij� t� ≤ �*ij � for some *ij and for all t; in addition,
N−1∑N

i=1
∑N
j=1 �*ij � ≤M;

4. E�eitejs�= *ij� ts and �NT �−1
∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 �*ij� ts� ≤M;

5. for every �t� s��E�N−1/2∑N
i=1�eiseit−E�eiseit���4 ≤M .

Assumption D—Weak Dependence between Factors and Idiosyncratic Errors:

E

(
1
N

N∑
i=1

∥∥∥∥ 1√
T

T∑
t=1
F 0
t eit

∥∥∥∥
2)

≤M�

Assumption A is standard for factor models. Assumption B ensures that each
factor has a nontrivial contribution to the variance of Xt . We only consider
nonrandom factor loadings for simplicity. Our results still hold when the i are
random, provided they are independent of the factors and idiosyncratic errors,
and E�i�4 ≤M . Assumption C allows for limited time-series and cross-section
dependence in the idiosyncratic component. Heteroskedasticity in both the time
and cross-section dimensions is also allowed. Under stationarity in the time
dimension, )N�s� t� = )N�s− t�, though the condition is not necessary. Given
Assumption C1, the remaining assumptions in C are easily satisfied if the eit are
independent for all i and t. The allowance for some correlation in the idiosyn-
cratic components sets up the model to have an approximate factor structure. It is
more general than a strict factor model, which assumes eit is uncorrelated across
i, the framework in which the APT theory of Ross (1976) is based. Thus, the
results to be developed will also apply to strict factor models. When the factors
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and idiosyncratic errors are independent (a standard assumption for conventional
factor models), Assumption D is implied by Assumptions A and C. Independence
is not required for D to be true. For example, suppose that eit = �it�Ft� with
�it being independent of Ft and �it satisfies Assumption C; then Assumption D
holds. Finally, the developments proceed assuming that the panel is balanced.
We also note that the model being analyzed is static, in the sense that Xit has a
contemporaneous relationship with the factors. The analysis of dynamic models
is beyond the scope of this paper.
For a factor model to be an approximate factor model in the sense of

Chamberlain and Rothschild (1983), the largest eigenvalue (and hence all of
the eigenvalues) of the N ×N covariance matrix != E�ete′t� must be bounded.
Note that Chamberlain and Rothschild focused on the cross-section behavior of
the model and did not make explicit assumptions about the time-series behavior
of the model. Our framework allows for serial correlation and heteroskedastic-
ity and is more general than their setup. But if we assume et is stationary with
E�eitejt� = *ij , then from matrix theory, the largest eigenvalue of ! is bounded
by maxi

∑N
j=1 �*ij �. Thus if we assume

∑N
j=1 �*ij � ≤M for all i and all N , which

implies Assumption C3, then (2) will be an approximate factor model in the
sense of Chamberlain and Rothschild.

3� estimation of the common factors

When N is small, factor models are often expressed in state space form, nor-
mality is assumed, and the parameters are estimated by maximum likelihood. For
example, Stock and Watson (1989) used N = 4 variables to estimate one factor,
the coincident index. The drawback is that because the number of parameters
increases with N ,4 computational difficulties make it necessary to abandon infor-
mation on many series even though they are available.
We estimate common factors in large panels by the method of asymptotic prin-

cipal components.5 The number of factors that can be estimated by this (non-
parametric) method is min+N�T ,, much larger than permitted by estimation
of state space models. But to determine which of these factors are statistically
important, it is necessary to first establish consistency of all the estimated com-
mon factors when both N and T are large. We start with an arbitrary number
k �k < min+N�T ,�. The superscript in ki and F

k
t signifies the allowance of k

factors in the estimation. Estimates of k and F k are obtained by solving the
optimization problem

V �k�=min
��F k

�NT �−1
N∑
i=1

T∑
t=1

(
Xit−ki F kt

)2
4 Gregory, Head, and Raynauld (1997) estimated a world factor and seven country specific fac-

tors from output, consumption, and investment for each of the G7 countries. The exercise involved
estimation of 92 parameters and perhaps stretched the state-space model to its limit.

5 The method of asymptotic principal components was studied by Connor and Korajzcyk (1986)
and Connor and Korajzcyk (1988) for fixed T . Forni et al. (2000a) and Stock and Watson (1998)
considered the method for large T .
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subject to the normalization of either �k′�k/N = Ik or F k′F k/T = Ik. If we con-
centrate out �k and use the normalization that F k′F k/T = Ik, the optimization
problem is identical to maximizing tr�F k′�XX ′�F k�. The estimated factor matrix,
denoted by F̃ k, is

√
T times the eigenvectors corresponding to the k largest

eigenvalues of the T ×T matrix XX ′. Given F̃ k� �̃k′ = �F̃ k′ F̃ k�−1F̃ k′X = F̃ k′X/T
is the corresponding matrix of factor loadings.
The solution to the above minimization problem is not unique, even though the

sum of squared residuals V �k� is unique. Another solution is given by �F k� �k�,
where �k is constructed as

√
N times the eigenvectors corresponding to the k

largest eigenvalues of the N×N matrixX ′X. The normalization that �k′ �k/N =
Ik implies F k =X�k/N . The second set of calculations is computationally less
costly when T > N , while the first is less intensive when T < N .6

Define

F̂ k = F k�F k′ F k/T �1/2�
a rescaled estimator of the factors. The following theorem summarizes the asymp-
totic properties of the estimated factors.

Theorem 1: For any fixed k ≥ 1, there exists a �r × k� matrix Hk with
rank�Hk�=min+k� r,, and CNT =min+

√
N�

√
T ,, such that

C2
NT

(
1
T

T∑
t=1

∥∥F̂ kt −Hk′F 0
t

∥∥2)=Op�1��(5)

Because the true factors (F 0) can only be identified up to scale, what is being
considered is a rotation of F 0. The theorem establishes that the time average of
the squared deviations between the estimated factors and those that lie in the
true factor space vanish as N�T →�. The rate of convergence is determined by
the smaller of N or T , and thus depends on the panel structure.
Under the additional assumption that

∑T
s=1 )N�s� t�

2 ≤M for all t and T , the
result7

C2
NT

∥∥F̂t−Hk′F 0
t

∥∥2 =Op�1�� for each t�(6)

can be obtained. Neither Theorem 1 nor (6) implies uniform convergence in t.
Uniform convergence is considered by Stock and Watson (1998). These authors
obtained a much slower convergence rate than C2

NT , and their result requires√
N � T . An important insight of this paper is that, to consistently estimate

the number of factors, neither (6) nor uniform convergence is required. It is
the average convergence rate of Theorem 1 that is essential. However, (6) could
be useful for statistical analysis on the estimated factors and is thus a result of
independent interest.

6 A more detailed account of computation issues, including how to deal with unbalanced panels, is
given in Stock and Watson (1998).

7 The proof is actually simpler than that of Theorem 1 and is thus omitted to avoid repetition.
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4� estimating the number of factors

Suppose for the moment that we observe all potentially informative factors
but not the factor loadings. Then the problem is simply to choose k factors that
best capture the variations in X and estimate the corresponding factor loadings.
Since the model is linear and the factors are observed, i can be estimated by
applying ordinary least squares to each equation. This is then a classical model
selection problem. A model with k+ 1 factors can fit no worse than a model
with k factors, but efficiency is lost as more factor loadings are being estimated.
Let F k be a matrix of k factors, and

V �k�F k�=min
�

1
NT

N∑
i=1

T∑
t=1

(
Xit−k′i F kt

)2
be the sum of squared residuals (divided by NT ) from time-series regressions of
Xi on the k factors for all i. Then a loss function V �k�F k�+kg�N�T �, where
g�N�T � is the penalty for overfitting, can be used to determine k. Because the
estimation of i is classical, it can be shown that the BIC with g�N�T �= ln�T �/T
can consistently estimate r . On the other hand, the AIC with g�N�T � = 2/T
may choose k > r even in large samples. The result is the same as in Geweke
and Meese (1981) derived for N = 1 because when the factors are observed,
the penalty factor does not need to take into account the sample size in the
cross-section dimension. Our main result is to show that this will no longer be
true when the factors have to be estimated, and even the BIC will not always
consistently estimate r .
Without loss of generality, we let

V �k� F̂ k�=min
�

1
NT

N∑
i=1

T∑
t=1

(
Xit−k′i F̂ kt

)2(7)

denote the sum of squared residuals (divided by NT ) when k factors are esti-
mated. This sum of squared residuals does not depend on which estimate of F is
used because they span the same vector space. That is, V �k� F̃ k� = V �k� F k� =
V �k� F̂ k�. We want to find penalty functions, g�N�T �, such that criteria of the
form

PC�k�= V �k� F̂ k�+kg�N�T �
can consistently estimate r . Let kmax be a bounded integer such that r ≤ kmax.

Theorem 2: Suppose that Assumptions A–D hold and that the k factors
are estimated by principal components. Let k̂ = argmin0≤k≤kmax PC�k�. Then
limN�T→� Prob�k̂ = r�= 1 if (i) g�N�T �→ 0 and (ii) C2

NT ·g�N�T �→� as N ,
T →�, where CNT =min+

√
N�

√
T ,.

Conditions (i) and (ii) are necessary in the sense that if one of the conditions
is violated, then there will exist a factor model satisfying Assumptions A–D, and
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yet the number of factors cannot be consistently estimated. However, conditions
(i) and (ii) are not always required to obtain a consistent estimate of r .
A formal proof of Theorem 2 is provided in the Appendix. The crucial ele-

ment in consistent estimation of r is a penalty factor that vanishes at an appro-
priate rate such that under and overparameterized models will not be chosen.
An implication of Theorem 2 is the following:

Corollary 1: Under the Assumptions of Theorem 2, the class of criteria
defined by

IC�k�= ln�V �k� F̂ k��+kg�N�T �

will also consistently estimate r .

Note that V �k� F̂ k� is simply the average residual variance when k factors are
assumed for each cross-section unit. The IC criteria thus resemble information
criteria frequently used in time-series analysis, with the important difference that
the penalty here depends on both N and T .
Thus far, it has been assumed that the common factors are estimated by the

method of principle components. Forni and Reichlin (1998) and Forni et al.
(2000a) studied alternative estimation methods. However the proof of Theorem 2
mainly uses the fact that F̂t satisfies Theorem 1, and does not rely on principal
components per se. We have the following corollary:

Corollary 2: Let Ĝk be an arbitrary estimator of F 0. Suppose there exists a
matrix H̃k such that rank �H̃k�=min+k� r,, and for some C̃2

NT ≤ C2
NT ,

C̃2
NT

(
1
T

T∑
t=1

∥∥Ĝk
t − H̃k′F 0

t

∥∥2)=Op�1��(8)

Then Theorem 2 still holds with F̂ k replaced by Ĝk and CNT replaced by C̃NT .

The sequence of constants C̃2
NT does not need to equal C2

NT = min+N�T ,.
Theorem 2 holds for any estimation method that yields estimators Ĝt satisfying
(8).8 Naturally, the penalty would then depend on C̃2

NT , the convergence rate
for Ĝt .

5� the PCp and the ICp

In this section, we assume that the method of principal components is used to
estimate the factors and propose specific formulations of g�N�T � to be used in

8 We are grateful for a referee whose question led to the results reported here.
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practice. Let 3̂2 be a consistent estimate of �NT �−1
∑N
i=1

∑T
t=1E�eit�

2. Consider
the following criteria:

PCp1�k�= V �k� F̂ k�+k3̂2

(
N +T
NT

)
ln
(
NT

N +T
)
4

PCp2�k�= V �k� F̂ k�+k3̂2

(
N +T
NT

)
lnC2

NT 4

PCp3�k�= V �k� F̂ k�+k3̂2

(
lnC2

NT

C2
NT

)
�

Since V �k� F̂ k�=N−1∑N
i=1 3̂

2
i , where 3̂

2
i = ê′iêi/T , the criteria generalize the Cp

criterion of Mallows (1973) developed for selection of models in strict time-
series or cross-section contexts to a panel data setting. For this reason, we refer
to these statistics as Panel Cp �PCp� criteria. Like the Cp criterion, 3̂2 provides
the proper scaling to the penalty term. In applications, it can be replaced by
V �kmax� F̂ kmax�. The proposed penalty functions are based on the sample size in
the smaller of the two dimensions. All three criteria satisfy conditions (i) and (ii)
of Theorem 2 since C−2

NT ≈ ��N +T �/NT �→ 0 as N�T →�. However, in finite
samples, C−2

NT ≤ �N +T �/NT . Hence, the three criteria, although asymptotically
equivalent, will have different properties in finite samples.9

Corollary 1 leads to consideration of the following three criteria:

ICp1�k�= ln�V �k� F̂ k��+k
(
N +T
NT

)
ln
(
NT

N +T
)
4

ICp2�k�= ln�V �k� F̂ k��+k
(
N +T
NT

)
lnC2

NT 4(9)

ICp3�k�= ln�V �k� F̂ k��+k
(
lnC2

NT

C2
NT

)
�

The main advantage of these three panel information criteria (ICp) is that they
do not depend on the choice of kmax through 3̂2, which could be desirable in
practice. The scaling by 3̂2 is implicitly performed by the logarithmic transfor-
mation of V �k� F̂ k� and thus not required in the penalty term.
The proposed criteria differ from the conventional Cp and information criteria

used in time-series analysis in that g�N�T � is a function of both N and T . To
understand why the penalty must be specified as a function of the sample size in

9 Note that PCp1 and PCp2, and likewise, ICp1 and ICp2, apply specifically to the principal com-
ponents estimator because C2

NT = min+N�T , is used in deriving them. For alternative estimators
satisfying Corollary 2, criteria PCp3 and ICp3 are still applicable with CNT replaced by C̃NT .
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both dimensions, consider the following:

AIC1�k�= V �k� F̂ k�+k3̂2

(
2
T

)
4

BIC1�k�= V �k� F̂ k�+k3̂2

(
lnT
T

)
4

AIC2�k�= V �k� F̂ k�+k3̂2

(
2
N

)
4

BIC2�k�= V �k� F̂ k�+k3̂2

(
lnN
N

)
4

AIC3�k�= V �k� F̂ k�+k3̂2

(
2
�N +T −k�

NT

)
4

BIC3�k�= V �k� F̂ k�+k3̂2

(
�N +T −k� ln�NT �

NT

)
�

The penalty factors in AIC1 and BIC1 are standard in time-series applications.
Although g�N�T �→ 0 as T →��AIC1 fails the second condition of Theorem 2
for all N and T . When N � T and N log�T �/T �−→ �, the BIC1 also fails
condition (ii) of Theorem 2. Thus we expect the AIC1 will not work for all N
and T , while the BIC1 will not work for small N relative to T . By analogy, AIC2
also fails the conditions of Theorem 2, while BIC2 will work only if N � T .
The next two criteria, AIC3 and BIC3, take into account the panel nature of the
problem. The two specifications of g�N�T � reflect first, that the effective number
of observations is N ·T , and second, that the total number of parameters being
estimated is k�N +T −k�. It is easy to see that AIC3 fails the second condition
of Theorem 2. While the BIC3 satisfies this condition, g�N�T � does not always
vanish. For example, if N = exp�T �, then g�N�T �→ 1 and the first condition
of Theorem 2 will not be satisfied. Similarly, g�N�T � does not vanish when T =
exp�N�. Therefore BIC3 may perform well for some but not all configurations
of the data. In contrast, the proposed criteria satisfy both conditions stated in
Theorem 2.

6� simulations and an empirical application

We first simulate data from the following model:

Xit =
r∑
j=1
ijFtj +

√
6eit

= cit+
√
6eit�

where the factors are T × r matrices of N�0�1� variables, and the factor load-
ings are N�0�1� variates. Hence, the common component of Xit , denoted by cit ,
has variance r . Results with ij uniformly distributed are similar and will not
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be reported. Our base case assumes that the idiosyncratic component has the
same variance as the common component (i.e. 6 = r�. We consider thirty con-
figurations of the data. The first five simulate plausible asset pricing applications
with five years of monthly data (T = 60) on 100 to 2000 asset returns. We then
increase T to 100. Configurations with N = 60�T = 100 and 200 are plausible
sizes of datasets for sectors, states, regions, and countries. Other configurations
are considered to assess the general properties of the proposed criteria. All com-
putations were performed using Matlab Version 5.3.
Reported in Tables I to III are the averages of k̂ over 1000 replications, for

r = 1�3, and 5 respectively, assuming that eit is homoskedastic N�0�1�. For all
cases, the maximum number of factors, kmax, is set to 8.10 Prior to computation
of the eigenvectors, each series is demeaned and standardized to have unit vari-
ance. Of the three PCp criteria that satisfy Theorem 2, PCp3 is less robust than
PCp1 and PCp2 when N or T is small. The ICp criteria generally have prop-
erties very similar to the PCp criteria. The term NT /�N +T � provides a small
sample correction to the asymptotic convergence rate of C2

NT and has the effect
of adjusting the penalty upwards. The simulations show this adjustment to be
desirable. When min+N�T , is 40 or larger, the proposed tests give precise esti-
mates of the number of factors. Since our theory is based on large N and T , it is
not surprising that for very small N or T , the proposed criteria are inadequate.
Results reported in the last five rows of each table indicate that the ICp crite-
ria tend to underparameterize, while the PCp tend to overparameterize, but the
problem is still less severe than the AIC and the BIC, which we now consider.
The AIC and BIC’s that are functions of only N or T have the tendency

to choose too many factors. The AIC3 performs somewhat better than AIC1
and AIC2, but still tends to overparameterize. At first glance, the BIC3 appears
to perform well. Although BIC3 resembles PCp2, the former penalizes an extra
factor more heavily since ln�NT � > lnC2

NT . As can be seen from Tables II and
III, the BIC3 tends to underestimate r , and the problem becomes more severe
as r increases.
Table IV relaxes the assumption of homoskedasticity. Instead, we let eit = e1it

for t odd, and eit = e1it+e2it for t even, where e1it and e2it are independent N�0�1�.
Thus, the variance in the even periods is twice as large as the odd periods.
Without loss of generality, we only report results for r = 5. PCp1�PCp2� ICp1, and
ICp2 continue to select the true number of factors very accurately and dominate
the remaining criteria considered.
We then vary the variance of the idiosyncratic errors relative to the common

component. When 6 < r , the variance of the common component is relatively
large. Not surprisingly, the proposed criteria give precise estimates of r . The
results will not be reported without loss of generality. Table V considers the case
6 = 2r . Since the variance of the idiosyncratic component is larger than the

10 In time-series analysis, a rule such as 8 int[�T /100�1/4] considered in Schwert (1989) is sometimes
used to set kmax, but no such guide is available for panel analysis. Until further results are available,
a rule that replaces T in Schwert’s rule by min+N�T , could be considered.
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TABLE I
DGP: Xit =

∑r
j=1 ijFtj +

√
6eit ; r = 1; 6 = 1.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 1�02 1�00 2�97 1�00 1�00 1�00 8�00 2�97 8�00 8�00 7�57 1�00
100 60 1�00 1�00 2�41 1�00 1�00 1�00 8�00 2�41 8�00 8�00 7�11 1�00
200 60 1�00 1�00 1�00 1�00 1�00 1�00 8�00 1�00 8�00 8�00 5�51 1�00
500 60 1�00 1�00 1�00 1�00 1�00 1�00 5�21 1�00 8�00 8�00 1�57 1�00
1000 60 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00
2000 60 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00
100 100 1�00 1�00 3�24 1�00 1�00 1�00 8�00 3�24 8�00 3�24 6�68 1�00
200 100 1�00 1�00 1�00 1�00 1�00 1�00 8�00 1�00 8�00 8�00 5�43 1�00
500 100 1�00 1�00 1�00 1�00 1�00 1�00 8�00 1�00 8�00 8�00 1�55 1�00
1000 100 1�00 1�00 1�00 1�00 1�00 1�00 1�08 1�00 8�00 8�00 1�00 1�00
2000 100 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00
40 100 1�01 1�00 2�69 1�00 1�00 1�00 8�00 8�00 8�00 2�69 7�33 1�00
60 100 1�00 1�00 2�25 1�00 1�00 1�00 8�00 8�00 8�00 2�25 6�99 1�00
60 200 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 8�00 1�00 5�14 1�00
60 500 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 4�67 1�00 1�32 1�00
60 1000 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00 1�00 1�00
60 2000 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00 1�00 1�00

4000 60 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00
4000 100 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00
8000 60 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00
8000 100 1�00 1�00 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00
60 4000 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00 1�00 1�00
100 4000 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00 1�00 1�00
60 8000 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00 1�00 1�00
100 8000 1�00 1�00 1�00 1�00 1�00 1�00 8�00 8�00 1�00 1�00 1�00 1�00

10 50 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 7�18
10 100 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 5�88
20 100 4�73 3�94 6�29 1�00 1�00 1�00 8�00 8�00 8�00 6�29 8�00 1�00
100 10 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00
100 20 5�62 4�81 7�16 1�00 1�00 1�00 8�00 7�16 8�00 8�00 8�00 1�00

Notes: Table I–Table VIII report the estimated number of factors (k̂) averaged over 1000 simulations. The true number of factors
is r and kmax= 8. When the average of k̂ is an integer, the corresponding standard error is zero. In the few cases when the averaged
k̂ over replications is not an integer, the standard errors are no larger than .6. In view of the precision of the estimates in the majority
of cases, the standard errors in the simulations are not reported. The last five rows of each table are for models of small dimensions
(either N or T is small).

common component, one might expect the common factors to be estimated with
less precision. Indeed, ICp1 and ICp2 underestimate r when min+N�T ,< 60, but
the criteria still select values of k that are very close to r for other configurations
of the data.
The models considered thus far have idiosyncratic errors that are uncorrelated

across units and across time. For these strict factor models, the preferred criteria
are PCp1�PCp2� IC1, and IC2. It should be emphasized that the results reported
are the averages of k̂ over 1000 simulations. We do not report the standard
deviations of these averages because they are identically zero except for a few
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TABLE II
DGP: Xit =

∑r
j=1 ijFtj +

√
6eit ; r = 3; 6 = 3.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 3�00 3�00 3�90 3�00 3�00 3�00 8�00 3�90 8�00 8�00 7�82 2�90
100 60 3�00 3�00 3�54 3�00 3�00 3�00 8�00 3�54 8�00 8�00 7�53 2�98
200 60 3�00 3�00 3�00 3�00 3�00 3�00 8�00 3�00 8�00 8�00 6�14 3�00
500 60 3�00 3�00 3�00 3�00 3�00 3�00 5�95 3�00 8�00 8�00 3�13 3�00
1000 60 3�00 3�00 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00
2000 60 3�00 3�00 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00
100 100 3�00 3�00 4�23 3�00 3�00 3�00 8�00 4�23 8�00 4�23 7�20 3�00
200 100 3�00 3�00 3�00 3�00 3�00 3�00 8�00 3�00 8�00 8�00 6�21 3�00
500 100 3�00 3�00 3�00 3�00 3�00 3�00 8�00 3�00 8�00 8�00 3�15 3�00
1000 100 3�00 3�00 3�00 3�00 3�00 3�00 3�01 3�00 8�00 8�00 3�00 3�00
2000 100 3�00 3�00 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00
40 100 3�00 3�00 3�70 3�00 3�00 3�00 8�00 8�00 8�00 3�70 7�63 2�92
60 100 3�00 3�00 3�42 3�00 3�00 3�00 8�00 8�00 8�00 3�42 7�39 2�99
60 200 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 8�00 3�00 5�83 3�00
60 500 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 5�44 3�00 3�03 3�00
60 1000 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00 3�00 3�00
60 2000 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00 3�00 3�00

4000 60 3�00 3�00 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 2�98
4000 100 3�00 3�00 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00
8000 60 3�00 3�00 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 2�97
8000 100 3�00 3�00 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00
60 4000 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00 3�00 2�99
100 4000 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00 3�00 3�00
60 8000 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00 3�00 2�98
100 8000 3�00 3�00 3�00 3�00 3�00 3�00 8�00 8�00 3�00 3�00 3�00 3�00

10 50 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 7�21
10 100 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 6�01
20 100 5�22 4�57 6�62 2�95 2�92 2�98 8�00 8�00 8�00 6�62 8�00 2�68
100 10 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00
100 20 6�00 5�29 7�39 2�95 2�91 2�99 8�00 7�39 8�00 8�00 8�00 2�72

cases for which the average itself is not an integer. Even for these latter cases,
the standard deviations do not exceed 0.6.
We next modify the assumption on the idiosyncratic errors to allow for serial

and cross-section correlation. These errors are generated from the process

eit = 8eit−1+vit+
J∑

j �=0� j=−J
�vi−jt �

The case of pure serial correlation obtains when the cross-section correlation
parameter � is zero. Since for each i, the unconditional variance of eit is
1/�1−82�, the more persistent are the idiosyncratic errors, the larger are their
variances relative to the common factors, and the precision of the estimates can
be expected to fall. However, even with 8= �5, Table VI shows that the estimates
provided by the proposed criteria are still very good. The case of pure cross-
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TABLE III
DGP: Xit =

∑r
j=1 ijFtj +

√
6eit ; r = 5; 6 = 5.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 4�99 4�98 5�17 4�88 4�68 4�99 8�00 5�17 8�00 8�00 7�94 3�05
100 60 5�00 5�00 5�07 4�99 4�94 5�00 8�00 5�07 8�00 8�00 7�87 3�50
200 60 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 6�91 3�80
500 60 5�00 5�00 5�00 5�00 5�00 5�00 6�88 5�00 8�00 8�00 5�01 3�88
1000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 3�82
2000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 3�59
100 100 5�00 5�00 5�42 5�00 5�00 5�01 8�00 5�42 8�00 5�42 7�75 4�16
200 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 7�06 4�80
500 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 5�02 4�97
1000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 4�98
2000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 4�98
40 100 5�00 4�99 5�09 4�86 4�69 5�00 8�00 8�00 8�00 5�09 7�86 2�96
60 100 5�00 5�00 5�05 4�99 4�94 5�00 8�00 8�00 8�00 5�05 7�81 3�46
60 200 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 8�00 5�00 6�71 3�83
60 500 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 6�44 5�00 5�00 3�91
60 1000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 3�79
60 2000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 3�58

4000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 3�37
4000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 4�96
8000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 3�10
8000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 4�93
60 4000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 3�35
100 4000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 4�96
60 8000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 3�12
100 8000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 4�93

10 50 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 7�28
10 100 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 6�30
20 100 5�88 5�41 6�99 4�17 3�79 4�68 8�00 8�00 8�00 6�99 8�00 2�79
100 10 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00
100 20 6�49 5�94 7�62 4�24 3�87 4�81 8�00 7�62 8�00 8�00 8�00 2�93

section dependence obtains with 8= 0. As in Chamberlain and Rothschild (1983),
our theory permits some degree of cross-section correlation. Given the assumed
process for eit , the amount of cross correlation depends on the number of units
that are cross correlated (2J ), as well as the magnitude of the pairwise correla-
tion (�). We set � to .2 and J to max+N/20�10,. Effectively, when N � 200, 10
percent of the units are cross correlated, and when N > 200�20/N of the sam-
ple is cross correlated. As the results in Table VII indicate, the proposed criteria
still give very good estimates of r and continue to do so for small variations in
� and J . Table VIII reports results that allow for both serial and cross-section
correlation. The variance of the idiosyncratic errors is now �1+ 2J�2�/�1−82�
times larger than the variance of the common component. While this reduces the
precision of the estimates somewhat, the results generally confirm that a small
degree of correlation in the idiosyncratic errors will not affect the properties of
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TABLE IV
DGP: Xit =

∑r
j=1 ijFtj +

√
6eit ; eit = e1it+:te2it (:t = 1 for t Even, :t = 0 for t Odd); r = 5; 6 = 5.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 4�96 4�86 6�09 4�09 3�37 4�93 8�00 6�09 8�00 8�00 8�00 1�81
100 60 4�99 4�90 5�85 4�69 4�18 5�01 8�00 5�85 8�00 8�00 8�00 2�08
200 60 5�00 4�99 5�00 4�93 4�87 5�00 8�00 5�00 8�00 8�00 8�00 2�22
500 60 5�00 5�00 5�00 4�99 4�98 5�00 8�00 5�00 8�00 8�00 7�91 2�23
1000 60 5�00 5�00 5�00 5�00 5�00 5�00 7�97 5�00 8�00 8�00 6�47 2�02
2000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�51 5�00 8�00 8�00 5�03 1�72
100 100 5�00 4�98 6�60 4�98 4�79 5�24 8�00 6�60 8�00 6�60 8�00 2�56
200 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 8�00 3�33
500 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 7�94 3�93
1000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 6�13 3�98
2000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�36 5�00 8�00 8�00 5�00 3�85
40 100 4�94 4�80 5�39 4�04 3�30 4�90 8�00 8�00 8�00 5�39 7�99 1�68
60 100 4�98 4�88 5�41 4�66 4�14 5�00 8�00 8�00 8�00 5�41 7�99 2�04
60 200 5�00 4�99 5�00 4�95 4�87 5�00 8�00 8�00 8�00 5�00 7�56 2�14
60 500 5�00 5�00 5�00 4�99 4�98 5�00 8�00 8�00 7�29 5�00 5�07 2�13
60 1000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 1�90
60 2000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 1�59

4000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 1�46
4000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 3�67
8000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 1�16
8000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 3�37
60 4000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 1�30
100 4000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 3�62
60 8000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 1�08
100 8000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 3�29

10 50 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 7�27
10 100 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 6�34
20 100 6�13 5�62 7�23 2�85 2�23 3�93 8�00 8�00 8�00 7�23 8�00 1�86
100 10 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00
100 20 7�52 6�99 7�99 3�31 2�64 6�17 8�00 7�99 8�00 8�00 8�00 2�30

the estimates. However, it will generally be true that for the proposed criteria to
be as precise in approximate as in strict factor models, N has to be fairly large
relative to J �� cannot be too large, and the errors cannot be too persistent as
required by theory. It is also noteworthy that the BIC3 has very good properties
in the presence of cross-section correlations (see Tables VII and VIII) and the
criterion can be useful in practice even though it does not satisfy all the condi-
tions of Theorem 2.

6�1� Application to Asset Returns

Factor models for asset returns are extensively studied in the finance litera-
ture. An excellent summary on multifactor asset pricing models can be found in
Campbell, Lo, and Mackinlay (1997). Two basic approaches are employed. One
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TABLE V
DGP: Xit =

∑r
j=1 ijFtj +

√
6eit ; r = 5; 6 = r×2.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 4�63 4�29 5�14 2�79 1�91 4�47 8�00 8�00 8�00 5�14 7�93 0�82
100 60 4�78 4�41 5�06 3�73 2�61 4�96 8�00 8�00 8�00 5�06 7�86 0�92
200 60 4�90 4�80 5�00 4�42 4�03 4�94 8�00 8�00 8�00 5�00 6�92 0�93
500 60 4�96 4�94 4�99 4�77 4�68 4�92 8�00 8�00 6�88 4�99 5�01 0�77
1000 60 4�97 4�97 4�98 4�88 4�86 4�93 8�00 8�00 5�00 4�98 5�00 0�56
2000 60 4�98 4�98 4�99 4�91 4�89 4�92 8�00 8�00 5�00 4�99 5�00 0�34
100 100 4�96 4�67 5�42 4�64 3�61 5�01 8�00 5�42 8�00 5�42 7�74 1�23
200 100 5�00 4�99 5�00 4�98 4�90 5�00 8�00 8�00 8�00 5�00 7�05 1�80
500 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 8�00 5�00 5�02 2�19
1000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 2�17
2000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 2�06
40 100 4�61 4�25 5�07 2�65 1�84 4�48 8�00 5�07 8�00 8�00 7�83 0�74
60 100 4�76 4�38 5�05 3�66 2�60 4�97 8�00 5�05 8�00 8�00 7�81 0�92
60 200 4�90 4�78 5�00 4�43 4�07 4�95 8�00 5�00 8�00 8�00 6�70 0�88
60 500 4�97 4�95 4�99 4�78 4�71 4�93 6�44 4�99 8�00 8�00 5�00 0�74
60 1000 4�98 4�97 4�99 4�87 4�84 4�92 5�00 4�99 8�00 8�00 5�00 0�51
60 2000 4�99 4�98 4�99 4�89 4�88 4�92 5�00 4�99 8�00 8�00 5�00 0�32

4000 60 4�99 4�99 4�99 4�92 4�92 4�93 8�00 8�00 5�00 4�99 5�00 0�18
4000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 1�72
8000 60 4�99 4�99 4�99 4�92 4�92 4�93 8�00 8�00 5�00 4�99 5�00 0�08
8000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 1�40
60 4000 4�99 4�99 4�99 4�93 4�92 4�95 5�00 4�99 8�00 8�00 5�00 0�15
100 4000 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 1�70
60 8000 4�99 4�99 4�99 4�92 4�92 4�93 5�00 4�99 8�00 8�00 5�00 0�08
100 8000 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 1�40

100 10 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 7�24
100 20 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 6�18
10 50 5�73 5�22 6�90 1�67 1�33 2�79 8�00 6�90 8�00 8�00 8�00 1�12
10 100 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00
20 100 6�39 5�79 7�57 1�85 1�44 3�04 8�00 8�00 8�00 7�57 8�00 1�31

is statistical factor analysis of unobservable factors, and the other is regression
analysis on observable factors. For the first approach, most studies use grouped
data (portfolios) in order to satisfy the small N restriction imposed by classical
factor analysis, with exceptions such as Connor and Korajczyk (1993). The second
approach uses macroeconomic and financial market variables that are thought
to capture systematic risks as observable factors. With the method developed in
this paper, we can estimate the number of factors for the broad U.S. stock mar-
ket, without the need to group the data, or without being specific about which
observed series are good proxies for systematic risks.
Monthly data between 1994.1–1998.12 are available for the returns of 8436

stocks traded on the New York Stock Exchange, AMEX, and NASDAQ. The
data include all lived stocks on the last trading day of 1998 and are obtained
from the CRSP data base. Of these, returns for 4883 firms are available for each
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TABLE VI
DGP: Xit =

∑r
j=1 ijFtj +

√
6eit ; eit = 8eit−1+vit+

∑J
j=−J � j �=0 �vi−jt ; r = 5; 6 = 5, 8= �5, �= 0, J = 0.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 7�31 6�59 8�00 5�52 4�53 8�00 8�00 8�00 8�00 8�00 8�00 2�97
100 60 6�11 5�27 8�00 5�00 4�76 8�00 8�00 8�00 8�00 8�00 8�00 3�09
200 60 5�94 5�38 7�88 5�01 4�99 7�39 8�00 7�88 8�00 8�00 8�00 3�31
500 60 5�68 5�39 6�79 5�00 5�00 5�11 8�00 6�79 8�00 8�00 8�00 3�41
1000 60 5�41 5�27 6�02 5�00 5�00 5�00 8�00 6�02 8�00 8�00 8�00 3�27
2000 60 5�21 5�14 5�50 5�00 5�00 5�00 8�00 5�50 8�00 8�00 8�00 3�06
100 100 5�04 5�00 8�00 5�00 4�97 8�00 8�00 8�00 8�00 8�00 8�00 3�45
200 100 5�00 5�00 7�75 5�00 5�00 7�12 8�00 7�75 8�00 8�00 8�00 4�26
500 100 5�00 5�00 5�21 5�00 5�00 5�00 8�00 5�21 8�00 8�00 8�00 4�68
1000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 8�00 4�73
2000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 8�00 4�69
40 100 5�37 5�05 7�30 4�58 4�08 5�82 8�00 8�00 8�00 7�30 8�00 2�45
60 100 5�13 4�99 7�88 4�93 4�67 7�40 8�00 8�00 8�00 7�88 8�00 2�80
60 200 5�00 5�00 5�02 4�99 4�96 5�00 8�00 8�00 8�00 5�02 8�00 2�84
60 500 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 8�00 5�00 7�53 2�72
60 1000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�72 5�00 5�04 2�54
60 2000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 2�28

4000 60 5�11 5�08 5�22 5�00 5�00 5�00 8�00 5�22 8�00 8�00 8�00 2�81
4000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 8�00 4�62
8000 60 5�05 5�05 5�08 5�00 5�00 5�00 8�00 5�08 8�00 8�00 8�00 2�55
8000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 8�00 4�37
60 4000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 1�92
100 4000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 4�21
60 8000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 1�64
100 8000 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00 5�00 3�97

100 10 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 7�47
100 20 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 6�69
10 50 7�16 6�68 7�89 3�57 2�92 5�70 8�00 8�00 8�00 7�89 8�00 2�42
10 100 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00
20 100 8�00 7�99 8�00 7�93 7�58 8�00 8�00 8�00 8�00 8�00 8�00 3�92

of the 60 months. We use the proposed criteria to determine the number of
factors. We transform the data so that each series is mean zero. For this balanced
panel with T = 60�N = 4883 and kmax= 15, the recommended criteria, namely,
PCp1�PCp2� ICp1, and ICp2, all suggest the presence of two factors.

7� concluding remarks

In this paper, we propose criteria for the selection of factors in large dimen-
sional panels. The main appeal of our results is that they are developed under
the assumption that N�T →� and are thus appropriate for many datasets typi-
cally used in macroeconomic analysis. Some degree of correlation in the errors is
also allowed. The criteria should be useful in applications in which the number
of factors has traditionally been assumed rather than determined by the data.
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TABLE VII
DGP: Xit =

∑r
j=1 ijFtj +

√
6eit ; eit = 8eit−1+vit+

∑J
j=−J � j �=0 �vi−jt ; r = 5; 6 = 5, 8= 0�0, �= �20,

J =max+N/20�10,.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 5�50 5�27 6�02 5�09 5�01 5�63 8�00 6�02 8�00 8�00 7�98 4�24
100 60 5�57 5�24 6�03 5�15 5�02 5�96 8�00 6�03 8�00 8�00 7�96 4�72
200 60 5�97 5�94 6�00 5�88 5�76 5�99 8�00 6�00 8�00 8�00 7�63 4�89
500 60 5�01 5�01 5�10 5�00 5�00 5�01 7�44 5�10 8�00 8�00 6�00 4�93
1000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�98 5�00 8�00 8�00 5�93 4�93
2000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�05 5�00 8�00 8�00 5�01 4�88
100 100 5�79 5�30 6�31 5�43 5�04 6�03 8�00 6�31 8�00 6�31 7�95 4�98
200 100 6�00 6�00 6�00 6�00 5�98 6�00 8�00 6�00 8�00 8�00 7�84 5�00
500 100 5�21 5�11 5�64 5�06 5�03 5�41 8�00 5�64 8�00 8�00 6�02 5�00
1000 100 5�00 5�00 5�00 5�00 5�00 5�00 6�00 5�00 8�00 8�00 6�00 5�00
2000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�72 5�00 8�00 8�00 5�41 5�00
40 100 5�17 5�06 5�95 5�00 4�98 5�30 8�00 8�00 8�00 5�95 7�96 4�22
60 100 5�30 5�06 6�01 5�03 5�00 5�87 8�00 8�00 8�00 6�01 7�94 4�69
60 200 5�35 5�16 5�95 5�04 5�01 5�65 8�00 8�00 8�00 5�95 7�39 4�89
60 500 5�43 5�29 5�83 5�05 5�02 5�35 8�00 8�00 7�49 5�83 6�04 4�94
60 1000 5�55 5�45 5�79 5�08 5�05 5�25 8�00 8�00 6�01 5�79 6�00 4�93
60 2000 5�64 5�59 5�76 5�07 5�04 5�17 8�00 8�00 6�00 5�76 6�00 4�91

4000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 4�84
4000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00
8000 60 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 4�72
8000 100 5�00 5�00 5�00 5�00 5�00 5�00 5�00 5�00 8�00 8�00 5�00 5�00
60 4000 5�65 5�63 5�72 5�05 5�04 5�09 8�00 8�00 6�00 5�72 6�00 4�85
100 4000 6�00 6�00 6�00 6�00 6�00 6�00 8�00 8�00 6�14 6�00 6�02 5�00
60 8000 5�67 5�66 5�71 5�04 5�04 5�05 8�00 8�00 6�00 5�71 6�00 4�77
100 8000 6�00 6�00 6�00 6�00 6�00 6�00 8�00 8�00 6�00 6�00 6�00 5�00

100 10 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 7�34
100 20 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 6�49
10 50 6�23 5�84 7�18 4�82 4�67 5�14 8�00 8�00 8�00 7�18 8�00 3�72
10 100 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00
20 100 6�75 6�27 7�75 4�97 4�73 5�71 8�00 7�75 8�00 8�00 8�00 3�81

Our discussion has focused on balanced panels. However, as discussed in Rubin
and Thayer (1982) and Stock and Watson (1998), an iterative EM algorithm
can be used to handle missing data. The idea is to replace Xit by its value as
predicted by the parameters obtained from the last iteration when Xit is not
observed. Thus, if i�j� and Ft�j� are estimated values of i and Ft from the
jth iteration, let X∗

it�j− 1� =Xit if Xit is observed, and X∗
it�j− 1� = ′i�j− 1�×

Ft�j−1� otherwise. We then minimize V ∗�k� with respect to F �j� and ��j�,
where V ∗�k� = �NT �−1∑T

i=1
∑T
t=1�X

∗
it�j − 1�− ki �j�F kt �j��2. Essentially, eigen-

values are computed for the T ×T matrix X∗�j − 1�X∗�j − 1�′. This process is
iterated until convergence is achieved.
Many issues in factor analysis await further research. Except for some results

derived for classical factor models, little is known about the limiting distribution
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TABLE VIII
DGP: Xit =

∑r
j=1 ijFtj +

√
6eit ; eit = 8eit−1+vit+

∑J
j=−J � j �=0 �vi−jt ; r = 5; 6 = 5, 8= 0�50, �= �20,

J =max+N/20�10,.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 7�54 6�92 8�00 6�43 5�52 8�00 8�00 8�00 8�00 8�00 8�00 4�14
100 60 6�57 5�93 8�00 5�68 5�28 8�00 8�00 8�00 8�00 8�00 8�00 4�39
200 60 6�52 6�15 7�97 6�00 5�91 7�84 8�00 7�97 8�00 8�00 8�00 4�68
500 60 6�16 5�97 7�12 5�40 5�30 5�92 8�00 7�12 8�00 8�00 8�00 4�76
1000 60 5�71 5�56 6�20 5�03 5�02 5�08 8�00 6�20 8�00 8�00 8�00 4�76
2000 60 5�33 5�26 5�61 5�00 5�00 5�00 8�00 5�61 8�00 8�00 8�00 4�69
100 100 5�98 5�71 8�00 5�72 5�27 8�00 8�00 8�00 8�00 8�00 8�00 4�80
200 100 6�01 6�00 7�95 6�00 5�99 7�78 8�00 7�95 8�00 8�00 8�00 5�03
500 100 5�89 5�81 6�06 5�59 5�46 5�94 8�00 6�06 8�00 8�00 8�00 5�00
1000 100 5�13 5�09 5�37 5�01 5�01 5�09 8�00 5�37 8�00 8�00 8�00 5�00
2000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 8�00 5�00
40 100 5�88 5�46 7�55 5�07 4�93 6�57 8�00 8�00 8�00 7�55 8�00 3�76
60 100 5�84 5�45 7�96 5�24 5�05 7�79 8�00 8�00 8�00 7�96 8�00 4�25
60 200 5�67 5�44 5�99 5�20 5�07 5�83 8�00 8�00 8�00 5�99 8�00 4�42
60 500 5�59 5�47 5�88 5�13 5�08 5�48 8�00 8�00 8�00 5�88 7�91 4�50
60 1000 5�61 5�54 5�81 5�13 5�08 5�34 8�00 8�00 6�91 5�81 6�15 4�40
60 2000 5�64 5�60 5�74 5�11 5�08 5�22 8�00 8�00 6�00 5�74 6�00 4�27

4000 60 5�12 5�10 5�24 5�00 5�00 5�00 8�00 5�24 8�00 8�00 8�00 4�56
4000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 8�00 5�00
8000 60 5�05 5�05 5�08 5�00 5�00 5�00 8�00 5�08 8�00 8�00 8�00 4�37
8000 100 5�00 5�00 5�00 5�00 5�00 5�00 8�00 5�00 8�00 8�00 8�00 5�00
60 4000 5�63 5�61 5�70 5�07 5�06 5�12 8�00 8�00 6�00 5�70 6�00 4�04
100 4000 6�00 6�00 6�00 6�00 6�00 6�00 8�00 8�00 6�44 6�00 6�17 5�00
60 8000 5�63 5�62 5�68 5�06 5�05 5�07 8�00 8�00 6�00 5�68 6�00 3�83
100 8000 6�00 6�00 6�00 6�00 6�00 6�00 8�00 8�00 6�08 6�00 6�02 5�00

100 10 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 7�54
100 20 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 6�85
10 50 7�34 6�87 7�93 4�84 4�37 6�82 8�00 8�00 8�00 7�93 8�00 3�41
10 100 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00 8�00
20 100 8�00 8�00 8�00 7�99 7�84 8�00 8�00 8�00 8�00 8�00 8�00 4�54

of the estimated common factors and common components (i.e., ̂′iF̂t). But using
Theorem 1, it may be possible to obtain these limiting distributions. For example,
the rate of convergence of F̂t derived in this paper could be used to examine the
statistical property of the forecast ŷT+1�T in Stock and Watson’s framework. It
would be useful to show that ŷT+1�T is not only a consistent but a

√
T consistent

estimator of yT+1, conditional on the information up to time T (provided that N
is of no smaller order of magnitude than T ). Additional asymptotic results are
currently being investigated by the authors.
The foregoing analysis has assumed a static relationship between the observed

data and the factors. Our model allows Ft to be a dependent process, e.g,
A�L�Ft = �t , where A�L� is a polynomial matrix of the lag operator. However,
we do not consider the case in which the dynamics enter into Xt directly. If the
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method developed in this paper is applied to such a dynamic model, the esti-
mated number of factors gives an upper bound of the true number of factors.
Consider the data generating process Xit = aiFt+biFt−1+eit . From the dynamic
point of view, there is only one factor. The static approach treats the model as
having two factors, unless the factor loading matrix has a rank of one.
The literature on dynamic factor models is growing. Assuming N is fixed,

Sargent and Sims (1977) and Geweke (1977) extended the static strict factor
model to allow for dynamics. Stock and Watson (1998) suggested how dynamics
can be introduced into factor models when both N and T are large, although
their empirical applications assumed a static factor structure. Forni et al. (2000a)
further allowed Xit to also depend on the leads of the factors and proposed a
graphic approach for estimating the number of factors. However, determining
the number of factors in a dynamic setting is a complex issue. We hope that
the ideas and methodology introduced in this paper will shed light on a formal
treatment of this problem.
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APPENDIX

To prove the main results we need the following lemma.

Lemma 1: Under Assumptions A–C, we have for some M1 <�, and for all N and T ,

(i) T −1 T∑
s=1

T∑
t=1
)N �s� t�

2 ≤M1,

(ii) E

(
T −1 T∑

t=1
�N−1/2e′t�

0�2
)
= E

(
T −1 T∑

t=1

∥∥∥∥N−1/2 N∑
i=1
eit

0
i

∥∥∥∥
2)

≤M1�

(iii) E

(
T −2 T∑

t=1

T∑
s=1

(
N−1 N∑

i=1
XitXis

)2)
≤M1,

(iv) E

∥∥∥∥�NT �−1/2 N∑
i=1

T∑
t=1
eit

0
i

∥∥∥∥≤M1.

Proof: Consider (i). Let 8�s� t� = )N �s� t�/�)N �s� s�)N �t� t��
1/2. Then �8�s� t�� ≤ 1. From

)N �s� s�≤M ,

T −1
T∑
s=1

T∑
t=1
)N �s� t�

2 = T −1
T∑
s=1

T∑
t=1
)N �s� s�)N �t� t�8�s� t�

2

≤MT −1
T∑
s=1

T∑
t=1

�)N �s� s�)N �t� t��1/2�8�s� t��

=MT −1
T∑
s=1

T∑
t=1

�)N �s� t�� ≤M 2
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by Assumption C2. Consider (ii).

E

∥∥∥∥N−1/2
N∑
i=1
eit

0
i

∥∥∥∥
2

= 1
N

N∑
i=1

N∑
j=1
E�eitejt�

0′
i 

0
j ≤ ̄2

1
N

N∑
i=1

N∑
j=1

�*ij � ≤ ̄2M

by Assumptions B and C3. For (iii), it is sufficient to prove E�Xit �4 ≤M1 for all �i� t�. Now E�Xit �4 ≤
8E�0′i F

0
t �

4+8E�eit �4 ≤ 8̄4E�F 0
t �4+8E�eit �4 ≤M1 for someM1 by Assumptions A, B, and C1. Finally

for (iv),

E

∥∥∥∥�NT �−1/2 N∑
i=1

T∑
t=1
eit

0
i

∥∥∥∥
2

= 1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1
E�eitejs�

0′
i 

0
j

≤ ̄2 1
NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

�*ij� ts � ≤ ̄2M

by Assumption C4.

Proof of Theorem 1: We use the mathematical identity F̂ k = N−1X�̃k and �̃k = T −1X ′F̃ k.
From the normalization F̃ k

′
F̃ k/T = Ik, we also have T −1∑T

t=1 �F̃ kt �2 = Op�1�. For Hk′ =
�F̃ k

′
F 0/T ���0′�0/N�, we have

F̂ kt −Hk′F 0
t = T −1

T∑
s=1
F̃ ks )N �s� t�+T −1

T∑
s=1
F̃ ks >st+T −1

T∑
s=1
F̃ ks ?st+T −1

T∑
s=1
F̃ ks @st where

>st =
e′set
N

−)N �s� t��

?st = F 0′
s �

0′et/N�

@st = F 0′
t �

0′es/N = ?ts�
Note that Hk depends on N and T . Throughout, we will suppress this dependence to simplify the
notation. We also note that �Hk� =Op�1� because �Hk� ≤ �F̃ k′ F̃ k/T �1/2�F 0′F 0/T �1/2��0′�/N� and
each of the matrix norms is stochastically bounded by Assumptions A and B. Because �x+ y+ z+
u�2 ≤ 4�x2+y2+z2+u2���F̂ kt −Hk′F 0

t �2 ≤ 4�at+bt+ct+dt�, where

at = T −2
∥∥∥∥ T∑
s=1
F̃ ks )N �s� t�

∥∥∥∥
2

�

bt = T −2
∥∥∥∥ T∑
s=1
F̃ ks >st

∥∥∥∥
2

�

ct = T −2
∥∥∥∥ T∑
s=1
F̃ ks ?st

∥∥∥∥
2

�

dt = T −2
∥∥∥∥ T∑
s=1
F̃ ks @st

∥∥∥∥
2

�

It follows that �1/T �
∑T
t=1 �F̂ kt −Hk′F 0

t �2 ≤ 1/T
∑T
t=1�at+bt+ct+dt�.

Now �∑T
s=1 F̃

k
s )N �s� t��2 ≤ �

∑T
s=1 �F̃ ks �2� · �

∑T
s=1 )

2
N �s� t��. Thus,

T −1
T∑
t=1
at ≤ T −1

(
T −1

T∑
s=1

∥∥F̃ ks ∥∥2
)
·T −1

( T∑
t=1

T∑
s=1
)N �s� t�

2

)

=Op�T
−1�

by Lemma 1(i).
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For bt , we have that

T∑
t=1
bt = T −2

T∑
t=1

∥∥∥∥ T∑
s=1
F̃ ks >st

∥∥∥∥
2

= T −2
T∑
t=1

T∑
s=1

T∑
u=1
F̃ k

′
s F̃

k
u >st>ut

≤
(
T −2

T∑
s=1

T∑
u=1

(
F̃ k

′
s F̃

k
u

)2)1/2[
T −2

T∑
s=1

T∑
u=1

( T∑
t=1
>st>ut

)2]1/2

≤
(
T −1

T∑
s=1

∥∥F̃ ks ∥∥2
)
·
[
T −2

T∑
s=1

T∑
u=1

( T∑
t=1
>st>ut

)2]1/2
�

From E�
∑T
t=1 >st>ut�

2 = E�∑T
t=1

∑T
v=1 >st>ut>sv>uv�≤ T 2 maxs� t E�>st �4 and

E�>st �4 =
1
N 2
E

∣∣∣∣N−1/2
N∑
i=1
�eiteis−E�eiteis�

∣∣∣∣
4

≤N−2M

by Assumption C5, we have

T∑
t=1
bt ≤Op�1� ·

√
T 2

N 2
=Op

(
T

N

)
�

T −1∑T
t=1 bt =Op�N

−1�. For ct , we have

ct = T −2
∥∥∥∥ T∑
s=1
F̃ ks ?st

∥∥∥∥
2

= T −2
∥∥∥∥ T∑
s=1
F̃ ks F

0′
s �

0′et/N

∥∥∥∥
2

≤ N−2�e′t�0�2
(
T −1

T∑
s=1

�F̃ ks �2
)(
T −1

T∑
s=1

�F 0
s �2

)

=N−2�e′t�0�2Op�1��

It follows that

T −1
T∑
t=1
ct =Op�1�N

−1T −1
T∑
t=1

∥∥∥∥ e′t�0

√
N

∥∥∥∥
2

=Op�N
−1��

by Lemma 1(ii). The term dt =Op�N
−1� can be proved similarly. Combining these results, we have

T −1∑T
t=1�at+bt+ct+dt�=Op�N

−1�+Op�T
−1�.

To prove Theorem 2, we need additional results.

Lemma 2: For any k, 1≤ k ≤ r, and Hk defined as the matrix in Theorem 1,

V �k� F̂ k�−V �k�F 0Hk�=Op�C
−1
NT ��

Proof: For the true factor matrix with r factors and Hk defined in Theorem 1, let M 0
FH =

I −P 0
FH denote the idempotent matrix spanned by null space of F 0Hk. Correspondingly, let Mk

F̂
=

IT − F̂ k�F̂ k′ F̂ k�−1F̂ k′ = I −PkF̂ . Then

V �k� F̂ k�=N−1T −1
N∑
i=1
X ′
iM

k

F̂
Xi�

V �k�F 0Hk�=N−1T −1
N∑
t=1
X ′
iM

0
FHXi�

V �k� F̂ k�−V �k�F 0Hk�=N−1T −1
N∑
i=1
X ′
i�P

0
FH −Pk

F̂
�Xi�
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Let Dk = F̂ k′ F̂ k/T and D0 =Hk′F 0′F 0Hk/T . Then

Pk
F̂
−P 0

FH = T −1F̂ k
(
F̂ k

′
F̂ k

T

)−1
F̂ k

′ −T −1F 0Hk

(
Hk′F 0′F 0Hk

T

)−1
Hk′F 0′

= T −1�F̂ k
′
D−1
k F̂

k−F 0HkD−1
0 H

k′F 0′ �

= T −1��F̂ k−F 0Hk+F 0Hk�D−1
k �F̂

k−F 0Hk+F 0Hk�′ −F 0HkD−1
0 H

k′F 0′ �

= T −1��F̂ k−F 0Hk�D−1
k �F̂

k−F 0Hk�′ + �F̂ k−F 0Hk�D−1
k H

k′F 0′

+F 0HkD−1
k �F̂

k−F 0Hk�′ +F 0Hk�D−1
k −D−1

0 �H
k′F 0′ ��

Thus, N−1T −1∑N
i=1X

′
i�P

k

F̂
−P 0

FH�Xi = I + II+ III+ IV . We consider each term in turn.

I =N−1T −2
N∑
i=1

T∑
t=1

T∑
s=1
�F̂ kt −Hk′F 0

t �
′D−1

k �F̂
k
s −Hk′F 0

s �XitXis

≤
(
T −2

T∑
t=1

T∑
s=1
��F̂ kt −Hk′F 0

t �
′D−1

k �F̂
k
s −Hk′F 0

s ��
2

)1/2

·
[
T −2

T∑
t=1

T∑
s=1

(
N−1

N∑
i=1
XitXis

)2]1/2

≤
(
T −1

T∑
t=1

�F kt −Hk′F 0
t �2

)
· �D−1

k � ·Op�1�=Op�C
−2
NT �

by Theorem 1 and Lemma 1(iii). We used the fact that �D−1
k � =Op�1�, which is proved below.

II=N−1T −2
N∑
i=1

T∑
t=1

T∑
s=1
�F̂ kt −Hk′F 0

t �
′D−1

k H
k′F 0

s XitXis

≤
(
T −2

T∑
t=1

T∑
s=1

�F̂ kt −Hk′F 0
t �2 ·�Hk′F 0

s �2 ·�D−1
k �2

)1/2

·
[
T −2

T∑
t=1

T∑
s=1

(
N−1

N∑
i=1
XitXis

)2]1/2

≤
(
T −1

T∑
t=1

�F̂ kt −Hk′F 0
t �2

)1/2

·�D−1
k �·

(
T −1

T∑
s=1

�Hk′F 0
s �2

)1/2

·Op�1�

=
(
T −1

T∑
t=1

�F̂ kt −Hk′F 0
t �2

)1/2

·Op�1�=Op�C
−1
NT ��

It can be verified that III is also Op�C
−1
NT �.

IV =N−1T −2
N∑
i=1

T∑
t=1

T∑
s=1
F 0′
t H

k�D−1
k −D−1

0 �H
k′F 0

s XitXis

≤ �D−1
k −D−1

0 �N−1
N∑
i=1

(
T −1

T∑
t=1

�Hk′F 0
t � · �Xit �

)2

= �D−1
k −D−1

0 � ·Op�1��

where Op�1� is obtained because the term is bounded by �Hk�2�1/T �∑T
t=1 �F 0

t �2�1/NT �×∑N
i=1

∑T
t=1 �Xit �2, which is Op�1� by Assumption A and E�Xit �2 ≤M . Next, we prove that �Dk−D0� =
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Op�C
−1
NT �. From

Dk−D0=
F̂ k

′
F̂ k

T
− H

k′F 0′F 0Hk

T

=T −1
T∑
t=1
�F̂ kt F̂

k′
t −Hk′F 0

t F
0′
t H

k�

=T −1
T∑
t=1
�F̂ kt −Hk′F 0

t ��F̂
k
t −Hk′F 0

t �
′

+T −1
T∑
t=1
�F̂ kt −Hk′F 0

t �F
0′
t H

k+T −1
T∑
t=1
Hk′F 0

t �F̂
k
t −Hk′F 0

t �
′�

�Dk−D0�≤T −1
T∑
t=1

�F̂ kt −Hk′F 0
t �2+2

(
T −1

T∑
t=1

�F̂ kt −Hk′F 0
t �2

)1/2

·
(
T −1

T∑
t=1

�Hk′F 0
t �2

)1/2

=Op�C
−2
NT �+Op�C

−1
NT �=Op�C

−1
NT ��

Because F 0′F 0/T converges to a positive definite matrix, and because rank�Hk�= k ≤ r , D0�k×k�
converges to a positive definite matrix. From �Dk−D0� =Op�C

−1
NT �, Dk also converges to a positive

definite matrix. This implies that �D−1
k � =Op�1�. Moreover, from D−1

k −D−1
0 =D−1

k �D0−Dk�D
−1
0 we

have �D−1
k −D−1

0 � = �Dk−D0�Op�1�=Op�C
−1
NT �. Thus IV =Op�C

−1
NT �.

Lemma 3: For the matrix Hk defined in Theorem 1, and for each k with k < r, there exists a *k > 0
such that

plim inf
N�T→�

V �k�F 0Hk�−V �r�F 0�= *k�

Proof:

V �k�F 0Hk�−V �r�F 0�=N−1T −1
N∑
i

X ′
i�P

0
F −P 0

FH�Xi

=N−1T −1
N∑
i−1
�F 00i +ei�′�P 0

F −P 0
FH��F

00i +ei�

=N−1T −1
N∑
i=1
0

′
i F

0′ �P 0
F −P 0

FH�F
00i

+2N−1T −1
N∑
i=1
e′i�P

0
F −P 0

FH�F
00i

+N−1T −1
N∑
i=1
e′i�P

0
F −P 0

FH�ei

= I + II+ III�

First, note that P 0
F −P 0

FH ≥ 0. Hence, III ≥ 0. For the first two terms,

I = tr
[
T −1F 0′ �P 0

F −P 0
FH�F

0N−1
N∑
i=1
0i 

0′
i

]

= tr
([
F 0′F 0

T
− F

0′F 0Hk

T

(
Hk′F 0′F 0Hk

T

)−1
Hk′F 0′F 0

T

]
·N−1

N∑
i=1
0i 

0′
i

)

→ tr
([
 F − FHk

0

(
Hk′

0  FH
k
0

)−1
Hk′

0  F

]
·D

)
= tr�A·D��



approximate factor models 217

where A=  F − FHk
0 �H

k′
0  FH

k
0 �

−1Hk′
0  F and H

k
0 is the limit of Hk with rank�Hk

0 �= k < r . Now
A �= 0 because rank� F �= r (Assumption A). Also, A is positive semi-definite and D> 0 (Assumption
B). This implies that tr�A ·D� > 0.

Remark: Stock and Watson (1998) studied the limit of Hk. The convergence of Hk to Hk
0 holds

jointly in T and N and does not require any restriction between T and N .
Now

II = 2N−1T −1
N∑
i=1
e′iP

0
F F

00i −2N−1T −1
N∑
i=1
e′iP

0
FHF

00i �

Consider the first term.

∣∣∣∣N−1T −1
N∑
i=1
e′iP

0
F F

00i

∣∣∣∣=
∣∣∣∣N−1T −1

N∑
i=1

T∑
t=1
eitF

0′
t 

0
i

∣∣∣∣
≤
(
T −1

T∑
t=1

�F 0
t �2

)1/2

· 1√
N

(
T −1

T∑
t=1

∥∥∥∥ 1√
N

N∑
i=1
eit

0
i

∥∥∥∥
2)1/2

=Op

(
1√
N

)
�

The last equality follows from Lemma 1(ii). The second term is also Op�1/
√
N�, and hence II =

Op�1/
√
N�→ 0.

Lemma 4: For any fixed k with k ≥ r, V �k� F̂ k�−V �r� F̂ r �=Op�C
−2
NT ).

Proof:

�V �k� F̂ k�−V �r� F̂ r �� ≤ �V �k� F̂ k�−V �r�F 0��+ �V �r�F 0�−V �r� F̂ r ��
≤ 2 max

r≤k≤kmax
�V �k� F̂ k�−V �r�F 0���

Thus, it is sufficient to prove for each k with k ≥ r ,

V �k� F̂ k�−V �r�F 0�=Op�C
−2
NT ��(10)

Let Hk be as defined in Theorem 1, now with rank r because k ≥ r . Let Hk+ be the generalized
inverse of Hk such that HkHk+ = Ir . From Xi = F 00i + ei , we have Xi = F 0HkHk+0i + ei . This
implies

Xi = F̂ kHk+0i +ei− �F̂ k−F 0Hk�Hk+0i

= F̂ kHk+0i +ui�

where ui = ei− �F̂ k−F 0Hk�Hk+0i .
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Note that

V �k� F̂ k�=N−1T −1
N∑
i=1
u′
iM

k

F̂
ui�

V �r�F 0�=N−1T −1
N∑
i=1
e′iM

0
F ei�

V �k� F̂ k�=N−1T −1
N∑
i=1
�ei− �F̂ k−F 0Hk�Hk+0i �

′Mk

F̂
�ei− �F̂ k−F 0Hk�Hk+0i �

=N−1T −1
N∑
i=1
e′iM

k

F̂
ei−2N−1T −1

N∑
i=1
0

′
i H

k+′�F̂ k−F 0Hk�′Mk

F̂
ei

+N−1T −1
N∑
i=1
0

′
i H

k+′�F̂ k−F 0Hk�′Mk

F̂
�F̂ k−F 0Hk�Hk+0i

= a+b+c�
Because I −Mk

F̂
is positive semi-definite, x′Mk

F̂
x ≤ x′x. Thus,

c ≤ N−1T −1
N∑
i=1
0

′
i H

k+′�F̂ k−F 0Hk�′�F̂ k−F 0Hk�Hk+0i

≤ T −1
T∑
t=1

�F̂ kt −Hk′F 0
t �2 ·

(
N−1

N∑
i=1

�0i �2�Hk+�2
)

=Op�C
−2
NT � ·Op�1�

by Theorem 1. For term b, we use the fact that �tr�A�� ≤ r�A� for any r× r matrix A. Thus

b = 2T −1tr
(
Hk+�F̂ k−F 0Hk�′Mk

F̂

(
N−1

N∑
i=1
ei

0
i

))

≤ 2r�Hk+� ·
∥∥∥∥ F̂ k−F 0Hk

√
T

∥∥∥∥ ·
∥∥∥∥ 1√

TN

N∑
i=1
ei

0
i

∥∥∥∥
≤ 2r�Hk+� ·

(
T −1

T∑
t=1

�F̂ kt −Hk′F 0
t �2

)1/2

· 1√
N

(
1
T

T∑
t=1

∥∥∥∥ 1√
N

N∑
i=1
eit

0
i

∥∥∥∥
2)1/2

=Op�C
−1
NT � ·

1√
N

=Op�C
−2
NT �

by Theorem 1 and Lemma 1(ii). Therefore,

V �k� F̂ k�=N−1T −1
N∑
i=1
e′iM

k

F̂
ei+Op�C

−2
NT ��

Using the fact that V �k� F̂ k�−V �r�F 0�≤ 0 for k ≥ r ,

0≥ V �k� F̂ k�−V �r�F 0�= 1
NT

N∑
i=1
e′iP

k

F̂
ei−

1
NT

N∑
i=1
e′iP

0
F ei+Op�C

−2
NT ��(11)

Note that

1
NT

N∑
i=1
e′iP

0
F ei ≤ ��F 0′F 0/T �−1� ·N−1T −2

N∑
i=1
e′iF

0F 0′ei

=Op�1�T
−1N−1

N∑
i=1

∥∥∥∥T −1/2
N∑
t=1
F 0
t eit

∥∥∥∥
2

=Op�T
−1�≤Op�C

−2
NT �



approximate factor models 219

by Assumption D. Thus

0≥N−1T −1
N∑
i=1
e′iP

k

F̂
ei+Op�C

−2
NT ��

This implies that 0≤N−1T −1∑N
i=1 e

′
iP

k

F̂
ei =Op�C

−2
NT �. In summary

V �k� F̂ k�−V �r�F 0�=Op�C
−2
NT ��

Proof of Theorem 2: We shall prove that limN�T→� P�PC�k� < PC�r��= 0 for all k �= r and
k ≤ kmax. Since

PC�k�−PC�r�= V �k� F̂ k�−V �r� F̂ r �− �r−k�g�N�T ��

it is sufficient to prove P�V �k� F̂ k�−V �r� F̂ r � < �r−k�g�N�T ��→ 0 as N�T →�. Consider k < r .
We have the identity:

V �k� F̂ k�−V �r� F̂ r �= �V �k� F̂ k�−V �k�F 0Hk��+ �V �k�F 0Hk�−V �r�F 0Hr��

+ �V �r�F 0Hr�−V �r� F̂ r ���

Lemma 2 implies that the first and the third terms are both Op�C
−1
NT �. Next, consider the second

term. Because F 0Hr and F 0 span the same column space, V �r�F 0Hr�= V �r�F 0�. Thus the second
term can be rewritten as V �k�F 0Hk�−V �r�F 0�, which has a positive limit by Lemma 3. Hence,
P�PC�k� < PC�r��→ 0 if g�N�T �→ 0 as N�T →�. Next, for k ≥ r ,

P�PC�k�−PC�r� < 0�= P�V �r� F̂ r �−V �k� F̂ k� > �k− r�g�N�T ���

By Lemma 4, V �r� F̂ r �−V �k� F̂ k�=Op�C
−2
NT �. For k> r� �k−r�g�N�T �≥ g�N�T �, which converges

to zero at a slower rate than C−2
NT . Thus for k > r�P�PC�k� < PC�r��→ 0 as N�T →�.

Proof of Corollary 1: Denote V �k� F̂ k� by V �k� for all k. Then

IC�k�− IC�r�= ln�V �k�/V �r��+ �k− r�g�N�T ��

For k < r , Lemmas 2 and 3 imply that V �k�/V �r� > 1+ �0 for some �0 > 0 with large probability
for all large N and T . Thus ln�V �k�/V �r�� ≥ �0/2 for large N and T . Because g�N�T �→ 0, we
have IC�k�− IC�r� ≥ �0/2− �r −k�g�N�T � ≥ �0/3 for large N and T with large probability. Thus,
P�IC�k�− IC�r� < 0�→ 0. Next, consider k > r . Lemma 4 implies that V �k�/V �r�= 1+Op�C

−2
NT �.

Thus ln�V �k�/V �r�� = Op�C
−2
NT �. Because �k− r�g�N�T � ≥ g�N�T �, which converges to zero at a

slower rate than C−2
NT , it follows that

P�IC�k�− IC�r� < 0�≤ P[Op

(
C−2
NT

)+g�N�T � < 0
]→ 0�

Proof of Corollary 2: Theorem 2 is based on Lemmas 2, 3, and 4. Lemmas 2 and 3 are still
valid with F k replaced by Ĝk and CNT replaced by C̃NT . This is because their proof only uses the
convergence rate of F̂t given in (5), which is replaced by (8). But the proof of Lemma 4 does make
use of the principle component property of F̂ k such that V �k� F̂ k�−V �r�F 0�≤ 0 for k ≥ r , which is
not necessarily true for Ĝk. We shall prove that Lemma 4 still holds when F̂ k is replaced by Ĝk and
CNT is replaced by C̃NT . That is, for k ≥ r ,

V �k� Ĝk�−V �r� Ĝr �=Op

(
C̃−2
NT

)
�(12)

Using arguments similar to those leading to (10), it is sufficient to show that

V �k� Ĝk�−V �r�F 0�=Op

(
C̃−2
NT

)
�(13)
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Note that for k ≥ r ,

V �k� F̂ k�≤ V �k� Ĝk�≤ V �r� Ĝr ��(14)

The first inequality follows from the definition that the principal component estimator gives the
smallest sum of squared residuals, and the second inequality follows from the least squares property
that adding more regressors does not increase the sum of squared residuals. Because C̃2

NT ≤C2
NT , we

can rewrite (10) as

V �k� F̂ k�−V �r�F 0�=Op

(
C̃−2
NT

)
�(15)

It follows that if we can prove

V �r� Ĝr �−V �r�F 0�=Op

(
C̃−2
NT

)
�(16)

then (14), (15), and (16) imply (13). To prove (16), we follow the same arguments as in the proof of
Lemma 4 to obtain

V �r� Ĝr �−V �r�F 0�= 1
NT

N∑
i=1
e′iP

r

Ĝ
ei−

1
NT

N∑
i=1
e′iP

0
F ei+Op

(
C̃−2
NT

)
�

where Pr
Ĝ
= Ĝr �Ĝr ′ Ĝr �−1Ĝr ′ ; see (11). Because the second term on the right-hand side is shown in

Lemma 4 to be Op�T
−1�, it suffices to prove the first term is Op�C̃

−2
NT �. Now,

1
NT

N∑
i=1
e′iP

r

Ĝ
ei ≤ ��Ĝr ′ Ĝr/T �−1� 1

N

N∑
i=1

∥∥e′iĜr /T
∥∥2�

Because H̃r is of full rank, we have ��Ĝr ′ Ĝr/T �−1� = Op�1� (follows from the same arguments in
proving �D−1

k � =Op�1�). Next,

1
N

N∑
i=1

∥∥e′iĜr /T
∥∥2≤(

1
NT

N∑
i=1

∥∥∥∥ 1√
T

T∑
t=1
F 0
t eit

∥∥∥∥
2)∥∥H̃r

∥∥2+(
1
NT

N∑
i=1

T∑
t=1
e2it

)
1
T

T∑
t=1

∥∥Ĝr
t −H̃r ′F 0

t

∥∥2
=Op�T

−1�Op�1�+Op�1�Op�C̃
−2
NT �=Op�C̃

−2
NT �

by Assumption D and (8). This completes the proof of (16) and hence Corollary 2.
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